The Continuity in G-metric Spaces Via Gβ- open Set

Amin Saif* and Mubarak AL-hubaishi**

*Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen

** Department of Mathematics, Faculty of Education, University of Saba Region, Mareb, Yemen

ABSTRACT

In this paper we introduce and investigate weak form of Gcontinuous functions in G-metric spaces, namely G^{β} -continuous functions, via G^{β} -open sets. We give the notions of contra G^{β} -continuous functions, almost contra G^{β} -continuous functions, weakly G^{β} -continuous functions and slightly G^{β} -continuous functions.

AMS classification: Primary 54A05, 54E35.

Keywords

continuous function; Metric spaces.

1. INTRODUCTION

In 2006 Mustafa and Sims , [2], introduced a new approach to generalized metric spaces, called G-metric space, and also introduced the notion of G-continuous functions. In 2021, [3], we introduced the concept of G^{β} -open sets by utilizing the open balls in G-metric spaces.

DEFINITION 1.1. [2] Let X be a nonempty set and R be the set of real numbers. A function $G: X \times X \times X \to R$ is called a G-metric function on X if it satisfies the following:

(1) G(x, x, y) > 0 for all $x \neq y \in X$;

- (2) G(x, y, z) = 0 if and only if x = y = z;
- (3) $G(x, x, y) \leq G(x, y, z)$ for every $x, y, z \in X$ with $y \neq z$;
- (4) G(x, y, z) = G(p(x, y, z)) for every $x, y, z \in X$ and for any permutation p of x, y, z;
- (5) $G(x, y, z) \leq G(x, u, u) + G(u, y, z)$ for every $x, y, z, u \in X$.

If G is a G-metric function on X, then the pair (X, G) is called a G-metric space.

Let (X,G) be a *G*-metric space, $x \in X$ and $A \subseteq X$. The open ball with center x and radius ϵ in metric space (X,G) is denoted by $B_G(x,\epsilon)$ and defined by

$$B_G(x,\epsilon) = \{ y \in X | d(x,y,y) < \epsilon \}.$$

The closed ball with center x and radius ϵ in G -metric space (X,G) is denoted by $C_G(x,\epsilon)$ and defined by

$$C_G(x,\epsilon) = \{ y \in X | d(x,y,y) \le \epsilon \}.$$

The set A is called an open set in G-metric space (X, G) if for every $x \in A$, there is $\epsilon > 0$ such that $B_G(x, \epsilon) \subseteq A$. The set A is called closed set in metric space (X, G) if X - A is an open set in G-metric space (X, G).

DEFINITION 1.2. [2] Let (X, G) and (X', G') be two Gmetric spaces. The function $f : (X, G) \to (X', G')$ is called Gcontinuous at a point $a \in X$ if given $\epsilon > 0$, there exists $\delta > 0$ such that $x, y \in X$ and $G(a, x, y) < \delta$ implies $G'(f(a), f(x), f(y)) < \epsilon$. A function f is G-continuous if it is G-continuous at all points $a \in X$.

THEOREM 1.3. [2] Let (X, G) and (X', G') be two G-metric spaces. A function $f : (X, G) \to (X', G')$ is G-continuous if and only if $f^{-1}(H)$ is an open set in (X, G) for every open set H in (X', G').

Let (X,G) be a *G*-metric space and $A \subseteq X$. A point $x \in X$ is called a *G*-point of *A* in *G*-metric space (X,G), [3] if there is $\delta > 0$ such that for every $y \in B_G(x, \delta)$,

$$-B_G(y,\epsilon) \cap G \neq \emptyset \quad \forall \epsilon > 0.$$

 $G^\beta(A)$ denotes the set of all $G^\beta\mbox{-points}$ of A in $G\mbox{-metric}$ space (X,G)

DEFINITION 1.4. [3] Let (X, G) be a *G*-metric space. A subset $A \subseteq X$ is called a G^{β} -open set in *G*-metric space (X, G) if for every $x \in A$,

$$B_G(x,\epsilon) \cap G^\beta(A) \neq \emptyset \quad \forall \epsilon > 0.$$

A subset $A \in X$ is called a G^{β} -closed set in G-metric space (X, G) if X - A is a G^{β} -open set in G-metric space (X, G).

THEOREM 1.5. Every open set is a G^{β} -open set.

This paper is organized as follows. Section 2 introduces a class of G^{β} -continuous functions in G-metric space. Section 3 gives the notions of contra G^{β} -continuous functions, almost contra G^{β} -continuous functions, weakly G^{β} -continuous functions and slightly G^{β} -continuous functions.

2. G^{β} -CONTINUOUS FUNCTION

DEFINITION 2.1. Let (X,G) and (X',G') be two G-metric spaces. A function $f:(X,G) \to (X',G')$ of a G-metric space (X,G) into a G-metric space (X',G') is called G^{β} -continuous

function if $f^{-1}(U)$ is a G^{β} -open set in (X, G) for every open set U in (X', G').

THEOREM 2.2. Let (X,G) and (X',G') be two G-metric spaces. A function $f : (X,G) \to (X',G')$ of a G-metric space (X,G) into a G-metric space (X',G') is G^{β} -continuous if and only if $f^{-1}(F)$ is a G^{β} -closed set in (X,G) for every closed set F in (X',G').

PROOF. Let $f: (X, G) \to (X', G')$ be a G^{β} -continuous and F be any closed set in (X', G'). Then $f^{-1}(X' - F) = X - f^{-1}(F)$ is a G^{β} -open set in (X, G), that is, $f^{-1}(F)$ is G^{β} -closed set in (X, G). Conversely, suppose that $f^{-1}(F)$ is a G^{β} -closed set in (X, G) for every closed set F in (X', G'). Let U be any open set in (X', G'). Then by the hypothesis, $f^{-1}(X' - U) = X - f^{-1}(U)$ is is a G^{β} -closed set in (X, G), that is, $f^{-1}(U)$ is a G^{β} -open set in (X, G). Hence f is a G^{β} -continuous. \Box

THEOREM 2.3. Every G-continuous function is G^{β} -continuous function.

PROOF. Let $f: (X,G) \to (X',G')$ be a G-continuous function and U be any open set in (X',G'). Then $f^{-1}(U)$ is an open set in (X,G) and by Theorem (1.5), $f^{-1}(U)$ is a G^{β} -open set in (X,G). That is, f is a G^{β} -continuous function. \Box

The proof of the following lemma is similar for the proof of Theorem (2.2).

LEMMA 2.4. A function $f : (X,G) \to (X',G')$ of a G-metric space (X,G) into a G-metric space (X',G') is G^{β} -continuous if and only if $f^{-1}(F)$ is a G^{β} -closed set in (X,G) for every closed set F in (X',G').

Let (X, G) be a G-metric space and $A \subseteq X$. The closure operator of A is denoted by $Cl^X(A)$ and defined by

 $Cl^X(A) = \cap \{ H \subseteq X : A \subseteq H \text{ and } H \text{ is closed set} \}.$

The interior functor of A is denoted by $Int^{X}(A)$ and defined by

$$Int^{X}(A) = \bigcup \{ H \subseteq X : H \subseteq A \text{ and } H \text{ is open set} \}.$$

The G-closure operator of A is denoted by $Cl_G^\beta(A)$ and defined by

$$Cl_G^{\beta}(A) = \cap \{ H \subseteq X : A \subseteq H \text{ and } H \text{ is } G^{\beta} \text{-closed set} \}.$$

The G-interior functor of A is denoted by $Int_G^{\beta}(A)$ and defined by

$$Int_G^{\beta}(A) = \bigcup \{ H \subseteq X : H \subseteq A \text{ and } H \text{ is } G^{\beta} \text{-open set} \}.$$

THEOREM 2.5. A function $f : (X,G) \to (X',G')$ of a G-metric space (X,G) into a G-metric space (X',G') is G^{β} -continuous if and only if $f[Cl_G^{\beta}(A)] \subseteq Cl^{X'}(f(A))$ for all $A \subseteq X$.

PROOF. Let f be a G^{β} -continuous and A be any subset of (X,G). Then $Cl^{X'}(f(A))$ is a closed set in (X',G'). Since f is a G^{β} -continuous then by Lemma (2.4), $f^{-1}[Cl^{X'}(f(A))]$ is a G^{β} -closed set in (X,G). That is,

$$Cl_G^{\beta} \left[f^{-1} [Cl^{X'}(f(A))] \right] = f^{-1} [Cl^{X'}(f(A))].$$

Since $f(A)\subseteq Cl^{X'}(f(A))$ then $A\subseteq f^{-1}[Cl^{X'}(f(A))].$ This implies,

$$Cl_{G}^{\beta}(A) \subseteq Cl_{G}^{\beta} \left[f^{-1} [Cl^{X'}(f(A))] \right] = f^{-1} [Cl^{X'}(f(A))].$$

Hence $f[Cl_G^{\beta}(A)] \subseteq Cl^{X'}(f(A)).$

Conversely, let H be any closed set in (X', G'), that is, $Cl^{X'}(H) = H$. Since $f^{-1}(H) \subseteq X$. Then by the hypothesis,

$$f\left[Cl_G^{\beta}[f^{-1}(H)]\right] \subseteq Cl^{X'}[f(f^{-1}(H))] \subseteq Cl^{X'}(H) = H.$$

This implies, $Cl_G^{\beta}[f^{-1}(H)] \subseteq f^{-1}(H)$. Hence $Cl_G^{\beta}[f^{-1}(H)] = f^{-1}(H)$, that is, $f^{-1}(H)$ is a G^{β} -closed set in (X, G). Hence by Lemma (2.4), f is a G^{β} -continuous. \Box

THEOREM 2.6. A function $f : (X,G) \to (X',G')$ of a G-metric space (X,G) into a G-metric space (X',G') is G^{β} continuous if and only if $Cl^{\beta}_{G}(f^{-1}(B)) \subseteq f^{-1}(Cl^{X'}(B))$ for all $B \subseteq X'$.

PROOF. Let f be a G^{β} -continuous and B be any subset of (X', G'). Then $Cl^{X'}(B)$ is a closed set in (X', G'). Since f is a G^{β} -continuous then by Lemma (2.4), $f^{-1}[Cl^{X'}(B)]$ is a G^{β} -closed set in (X, G). That is,

$$Cl_{G}^{\beta}\left[f^{-1}[Cl^{X'}(B)]\right] = f^{-1}[Cl^{X'}(B)]$$

Since $B \subseteq Cl^{X'}(B)$ then $f^{-1}(B) \subseteq f^{-1}[Cl^{X'}(B)]$. This implies,

$$Cl_G^{\beta}(f^{-1}(B)) \subseteq Cl_G^{\beta}[f^{-1}[Cl^{X'}(B)]] = f^{-1}[Cl^{X'}(B)].$$

Hence $Cl^{\beta}_{G}(f^{-1}(B)) \subseteq f^{-1}[Cl^{X'}(B)].$ Conversely, let H be any closed set in (X', G'), that is, $Cl^{X'}(H) = H$. Since $H \subseteq X'$. Then by the hypothesis,

$$Cl_{C}^{\beta}(f^{-1}(H)) \subseteq f^{-1}(Cl^{X'}(H)) = f^{-1}(H).$$

This implies, $Cl_G^{\beta}[f^{-1}(H)] \subseteq f^{-1}(H)$. Hence $Cl_G^{\beta}[f^{-1}(H)] = f^{-1}(H)$, that is, $f^{-1}(H)$ is a G^{β} -closed set in (X, G). Hence by Lemma (2.4), f is a G^{β} -continuous. \Box

THEOREM 2.7. A function $f : (X,G) \to (X',G')$ of a G-metric space (X,G) into a G-metric space (X',G') is G^{β} continuous if and only if $f^{-1}(Int^{X'}(B)) \subseteq Int^{\beta}_{G}[f^{-1}(B)]$ for all $B \subseteq X'$.

PROOF. Let f be a G^{β} -continuous and B be any subset of (X', G'). Then $Int^{X'}(B)$ is an open set in (X', G'). Since f is a G^{β} -continuous then $f^{-1}[Int^{X'}(B)]$ is a G^{β} -open set in (X, G). That is,

$$Int_{G}^{\beta} \left[f^{-1} [Int^{X'}(B)] \right] = f^{-1} [Int^{X'}(B)].$$

Since $Int^{X'}(B) \subseteq B$ then $f^{-1}[Int^{X'}(B)] \subseteq f^{-1}(B)$. This implies,

$$f^{-1}[Int^{X'}(B)] = Int_{G}^{\beta} \left[f^{-1}[Int^{X'}(B)] \right] \subseteq Int_{G}^{\beta}(f^{-1}(B)).$$

Hence $f^{-1}(Int^{X'}(B)) \subseteq Int_G^{\beta}[f^{-1}(B)]$. Conversely, let U be any open set in (X', G'), that is, $Int^{X'}(U) = U$. Since $U \subseteq X'$. Then by the hypothesis,

$$f^{-1}(U) = f^{-1}(Int^{X'}(U)) \subseteq Int_G^{\beta}[f^{-1}(U)].$$

This implies, $f^{-1}(U) \subseteq Int_G^{\beta}[f^{-1}(U)]$. Hence $f^{-1}(U) = Int_G^{\beta}[f^{-1}(U)]$, that is, $f^{-1}(U)$ is a G^{β} -open set in (X, G). Hence f is a G^{β} -continuous. \Box

3. CONTRA G^{β} -CONTINUOUS FUNCTIONS

DEFINITION 3.1. A function $f : (X, G) \to (X', G')$ of a Gmetric space (X, G) into a G-metric space (X', G') is called contra G^{β} -continuous function if $f^{-1}(V)$ is a G^{β} -closed set in (X, G) for every open set V in (X', G').

THEOREM 3.2. A function $f : (X, G) \to (X', G')$ is contra G^{β} -continuous if and only if $f^{-1}(F)$ is a G^{β} -open set in (X, G) for every closed set F in (X', G').

THEOREM 3.3. A function $f : (X, G) \to (X', G')$ is contra G^{β} -continuous if and only if for each $x \in X$ and each closed set F in (X', G') containing f(x), there is a G^{β} -open set U in (X, G) containing x such that $f(U) \subseteq F$.

PROOF. Suppose that $f : (X, G) \to (X', G')$ is contra G^{β} continuous. Let $x \in X$ and F be a closed set in (X', G') containing f(x). Then by the last theorem, $U = f^{-1}(F)$ is a G^{β} -open set in (X, G). Since $f(x) \in F$ then $x \in f^{-1}(F) = U$ and f(U) = $f(f^{-1}(F)) \subseteq F$.

Conversely, Let F be a closed set in (X', G'). For each $x \in f^{-1}(F)$, $f(x) \in F$. Then by the hypothesis, there is a G^{β} -open set U_x in (X, G) containing x such that $f(U_x) \subseteq F$. Therefore, we obtain

$$f^{-1}(F) = \bigcup \{ U_x : x \in f^{-1}(F) \}.$$

Then $f^{-1}(F)$ is a G^{β} -open set in (X, G). Hence by the last theorem, f is a contra G^{β} -continuous. \Box

DEFINITION 3.4. A function $f : (X, G) \to (X', G')$ of a Gmetric space (X, G) into a G-metric space (X', G') is called almost G^{β} -continuous if for each $x \in X$ and each open set V in (X', G')containing f(x), there is a G^{β} -open set U in (X, G) containing xsuch that $f(U) \subseteq Int_{G'}^{\beta}[Cl^{X'}(V)].$

A function $f : (X,G) \to (X',G')$ of a G-metric space (X,G)into a G-metric space (X',G') is called G^{β} -open function if f(V)is a G^{β} -open set in (X',G') for every G^{β} -open set V in (X,G).

THEOREM 3.5. If a function $f : (X, G) \to (X', G')$ is a G^{β} -open function and contra G^{β} -continuous then f is an almost G^{β} -continuous.

PROOF. Let $x \in X$ be any point in (X, G) and V be any open set in (X', G') containing f(x). Since f is contra G^{β} -continuous and $Cl^{X'}(V)$ be a closed set in (X', G') containing f(x) then by Theorem (3.3), there is a G^{β} -open set U in (X, G) containing xsuch that $f(U) \subseteq Cl^{X'}(V)$. Since f is a G^{β} -open function and Uis a G^{β} -open set in (X, G) then f(U) is a G^{β} -open set in (X', G')and

 $f(U) = Int^{\beta}_{G'}[f(U)] \subseteq Int^{\beta}_{G'}[Cl^{X'}(f(U))] \subseteq Int^{\beta}_{G'}[Cl^{X'}(V)].$

This shows that f is an almost G^{β} -continuous. \Box

DEFINITION 3.6. A function $f : (X, G) \to (X', G')$ of a G-metric space (X, G) into a G-metric space (X', G') is called weakly G^{β} -continuous function if for each $x \in X$ and each open set V in (X', G') containing f(x), there is a G^{β} -open set U in (X, G) containing x such that $f(U) \subseteq Cl^{X'}(V)$.

It is clear that every a G^{β} -continuous function is a weakly G^{β} -continuous function.

A subset of G-metric space is called a clopen set if it is both open and closed set, similar for G^{β} -clopen set. DEFINITION 3.7. A function $f : (X,G) \to (X',G')$ of a G-metric space (X,G) into a G-metric space (X',G') is called slightly G^{β} -continuous function if for each $x \in X$ and each clopen set U in (X',G') containing f(x), there exists G^{β} -open set V in (X,G) containing x such that $f(V) \subseteq U$.

THEOREM 3.8. Let $f : (X,G) \to (X',G')$ be a function of a G-metric space (X,G) into a G-metric space (X',G'). Then the following are equivalent:

- (1) f is slightly G^{β} -continuous.
- (2) $f^{-1}(U)$ is a G^{β} -open set in (X, G) for every clopen set U in (X', G').
- (3) f⁻¹(U) is a G^β-closed set in (X, G) for every clopen set U in (X', G').
- (4) f⁻¹(U) is a G^β-cloopen set in (X, G) for every clopen set U in (X', G').

PROOF. $1 \Rightarrow 2$: Let U be a clopen set in (X', G'). For each $x \in f^{-1}(U)$, $f(x) \in U$. Since f is slightly G^{β} -continuous then there exists G^{β} -open set V_x in (X, G) containing x such that $f(V_x) \subseteq U$. This implies, $x \in V_x \subseteq f^{-1}(U)$. Hence

$$f^{-1}(U) = \bigcup \{ V_x : x \in f^{-1}(U) \}.$$

That is, $f^{-1}(U)$ is a G^{β} -open set in (X, G).

 $2 \Rightarrow 3$: Let U be a clopen set in (X', G'). Then X' - U is a clopen set in (X', G'). By the hypothesis, $X - f^{-1}(U) = f^{-1}(X' - U)$ is a G^{β} -open set in (X, G). That is, $f^{-1}(U)$ is a G^{β} -closed set in (X, G).

 $3 \Rightarrow 4$: It is easy from the previous.

 $4 \Rightarrow 1$: Let $x \in X$ be any point in (X, G) and U be a clopen set in (X', G') containing f(x). By the hypothesis, $f^{-1}(U)$ is a G^{β} cloopen set in (X, G). Then $V = f^{-1}(U)$ is a G^{β} -open set V in (X, G) containing x such that $f(V) \subseteq U$. That is, f is slightly G^{β} -continuous. \Box

THEOREM 3.9. Every weakly G^{β} -continuous is slightly G^{β} -continuous .

PROOF. Let $f : (X,G) \to (X',G')$ be a weakly G^{β} continuous function. Let $x \in X$ be any point in (X,G) and Ube any clopen set in (X',G') containing f(x). Then U is an open set in (X',G') containing f(x). Then there is a G^{β} -open set V in (X,G) containing x such that $f(V) \subseteq Cl(U) = U$. Hence f is slightly G^{β} -continuous. \Box

4. REFERENCES

- Z.Mustafa and B.Sims, Some remarks concerning D-metric spaces Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia (Spain), (2003), 189-198.
- [2] Z.Mustafa and B.Sims, A new approach to generalized metric spaces, Journal of Non-linear and Convex Analysis, 7, (2006), 289-297.
- [3] A. Mubarak and A. Saif, On G^{β} -property in G-metric spaces, Asian Journal of Advanced Research and Reports (in press).