The Continuity in G-metric Spaces Via G β - open Set

Amin Saif* and Mubarak AL-hubaishi**
*Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen
${ }^{* *}$ Department of Mathematics,Faculty of Education, University of Saba Region, Mareb, Yemen

Abstract

In this paper we introduce and investigate weak form of Gcontinuous functions in G-metric spaces, namely G^{β}-continuous functions, via G^{β}-open sets. We give the notions of contra G^{β}-continuous functions, almost contra G^{β}-continuous functions, weakly G^{β}-continuous functions and slightly G^{β}-continuous functions.

AMS classification: Primary 54A05, 54E35.

Keywords

continuous function; Metric spaces.

1. INTRODUCTION

In 2006 Mustafa and Sims , [2], introduced a new approach to generalized metric spaces, called G-metric space, and also introduced the notion of G-continuous functions. In 2021, [3], we introduced the concept of G^{β}-open sets by utilizing the open balls in G-metric spaces.

Definition 1.1. [2] Let X be a nonempty set and R be the set of real numbers. A function $G: X \times X \times X \rightarrow R$ is called a G-metric function on X if it satisfies the following:
(1) $G(x, x, y)>0$ for all $x \neq y \in X$;
(2) $G(x, y, z)=0$ if and only if $x=y=z$;
(3) $G(x, x, y) \leq G(x, y, z)$ for every $x, y, z \in X$ with $y \neq z$;
(4) $G(x, y, z)=G(p(x, y, z))$ for every $x, y, z \in X$ and for any permutation p of x, y, z;
(5) $G(x, y, z) \leq G(x, u, u)+G(u, y, z)$ for every $x, y, z, u \in X$.

If G is a G-metric function on X, then the pair (X, G) is called a G-metric space.

Let (X, G) be a G-metric space, $x \in X$ and $A \subseteq X$. The open ball with center x and radius ϵ in metric space $(\overline{X,} G)$ is denoted by $B_{G}(x, \epsilon)$ and defined by

$$
B_{G}(x, \epsilon)=\{y \in X \mid d(x, y, y)<\epsilon\}
$$

The closed ball with center x and radius ϵ in G-metric space (X, G) is denoted by $C_{G}(x, \epsilon)$ and defined by

$$
C_{G}(x, \epsilon)=\{y \in X \mid d(x, y, y) \leq \epsilon\} .
$$

The set A is called an open set in G-metric space (X, G) if for every $x \in A$, there is $\epsilon>0$ such that $B_{G}(x, \epsilon) \subseteq A$. The set A is called closed set in metric space (X, G) if $X-A$ is an open set in G-metric space (X, G).

Definition 1.2. [2] Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two Gmetric spaces. The function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ is called Gcontinuous at a point $a \in X$ if given $\epsilon>0$, there exists $\delta>0$ such that $x, y \in X$ and $G(a, x, y)<\delta$ implies $G^{\prime}(f(a), f(x), f(y))<$ ϵ. A function f is G-continuous if it is G-continuous at all points $a \in X$.

Theorem 1.3. [2] Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ is G -continuous if and only if $f^{-1}(H)$ is an open set in (X, G) for every open set H in $\left(X^{\prime}, G^{\prime}\right)$.

Let (X, G) be a G-metric space and $A \subseteq X$. A point $x \in X$ is called a G-point of A in G-metric space (X, G), [3] if there is $\delta>0$ such that for every $y \in B_{G}(x, \delta)$,

$$
B_{G}(y, \epsilon) \cap G \neq \emptyset \quad \forall \epsilon>0 .
$$

$G^{\beta}(A)$ denotes the set of all G^{β}-points of A in G-metric space (X, G)

Definition 1.4. [3] Let (X, G) be a G-metric space. A subset $A \subseteq X$ is called a G^{β}-open set in G-metric space (X, G) if for every $x \in A$,

$$
B_{G}(x, \epsilon) \cap G^{\beta}(A) \neq \emptyset \quad \forall \epsilon>0
$$

A subset $A \in X$ is called a G^{β}-closed set in G-metric space (X, G) if $X-A$ is a G^{β}-open set in G-metric space (X, G).

THEOREM 1.5. Every open set is a G^{β}-open set.
This paper is organized as follows. Section 2 introduces a class of G^{β}-continuous functions in G-metric space. Section 3 gives the notions of contra G^{β}-continuous functions, almost contra G^{β} continuous functions, weakly G^{β}-continuous functions and slightly G^{β}-continuous functions.

2. G^{β}-CONTINUOUS FUNCTION

Definition 2.1. Let (X, G) and (X^{\prime}, G^{\prime}) be two G-metric spaces. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is called G^{β}-continuous
function if $f^{-1}(U)$ is a G^{β}-open set in (X, G) for every open set U in $\left(X^{\prime}, G^{\prime}\right)$.

Theorem 2.2. Let (X, G) and (X^{\prime}, G^{\prime}) be two G-metric spaces. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is G^{β}-continuous if and only if $f^{-1}(F)$ is a G^{β}-closed set in (X, G) for every closed set F in $\left(X^{\prime}, G^{\prime}\right)$.
Proof. Let $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ be a G^{β}-continuous and F be any closed set in $\left(X^{\prime}, G^{\prime}\right)$. Then $f^{-1}\left(X^{\prime}-F\right)=X-f^{-1}(F)$ is a G^{β}-open set in (X, G), that is, $f^{-1}(F)$ is G^{β}-closed set in (X, G). Conversely, suppose that $f^{-1}(F)$ is a G^{β}-closed set in (X, G) for every closed set F in $\left(X^{\prime}, G^{\prime}\right)$. Let U be any open set in $\left(X^{\prime}, G^{\prime}\right)$. Then by the hypothesis, $f^{-1}\left(X^{\prime}-U\right)=X-f^{-1}(U)$ is is a G^{β}-closed set in (X, G), that is, $f^{-1}(U)$ is a G^{β}-open set in (X, G). Hence f is a G^{β}-continuous.

Theorem 2.3. Every G-continuous function is G^{β} continuous function.
Proof. Let $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ be a G-continuous function and U be any open set in $\left(X^{\prime}, G^{\prime}\right)$. Then $f^{-1}(U)$ is an open set in (X, G) and by Theorem $\sqrt{1.5}, f^{-1}(U)$ is a G^{β}-open set in (X, G). That is, f is a G^{β}-continuous function.
The proof of the following lemma is similar for the proof of Theorem (2.2).

Lemma 2.4. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is G^{β} continuous if and only if $f^{-1}(F)$ is a G^{β}-closed set in (X, G) for every closed set F in $\left(X^{\prime}, G^{\prime}\right)$.
Let (X, G) be a G-metric space and $A \subseteq X$. The closure operator of A is denoted by $C l^{X}(A)$ and defined by

$$
C l^{X}(A)=\cap\{H \subseteq X: A \subseteq H \text { and } H \text { is closed set }\} .
$$

The interior functor of A is denoted by $I n t^{X}(A)$ and defined by

$$
\operatorname{Int}^{X}(A)=\cup\{H \subseteq X: H \subseteq A \text { and } H \text { is open set }\} .
$$

The G-closure operator of A is denoted by $C l_{G}^{\beta}(A)$ and defined by

$$
C l_{G}^{\beta}(A)=\cap\left\{H \subseteq X: A \subseteq H \text { and } H \text { is } G^{\beta} \text {-closed set }\right\} .
$$

The G-interior functor of A is denoted by $I n t_{G}^{\beta}(A)$ and defined by

$$
\text { Int }{ }_{G}^{\beta}(A)=\cup\left\{H \subseteq X: H \subseteq A \text { and } H \text { is } G^{\beta} \text {-open set }\right\} .
$$

THEOREM 2.5. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is G^{β} continuous if and only if $f\left[C l_{G}^{\beta}(A)\right] \subseteq C l^{X^{\prime}}(f(A))$ for all $A \subseteq$ X.
Proof. Let f be a G^{β}-continuous and A be any subset of (X, G). Then $C l^{X^{\prime}}(f(A))$ is a closed set in $\left(X^{\prime}, G^{\prime}\right)$. Since f is a G^{β}-continuous then by Lemma $\sqrt[2.4]{ }, f^{-1}\left[C l^{X^{\prime}}(f(A))\right]$ is a G^{β} closed set in (X, G). That is,

$$
C l_{G}^{\beta}\left[f^{-1}\left[C l^{X^{\prime}}(f(A))\right]\right]=f^{-1}\left[C l^{X^{\prime}}(f(A))\right] .
$$

Since $f(A) \subseteq C l^{X^{\prime}}(f(A))$ then $A \subseteq f^{-1}\left[C l^{X^{\prime}}(f(A))\right]$. This implies,

$$
C l_{G}^{\beta}(A) \subseteq C l_{G}^{\beta}\left[f^{-1}\left[C l^{X^{\prime}}(f(A))\right]\right]=f^{-1}\left[C l^{X^{\prime}}(f(A))\right] .
$$

Hence $f\left[C l_{G}^{\beta}(A)\right] \subseteq C l^{X^{\prime}}(f(A))$.
Conversely, let H be any closed set in $\left(X^{\prime}, G^{\prime}\right)$, that is, $C l^{X^{\prime}}(H)=$ H. Since $f^{-1}(H) \subseteq X$. Then by the hypothesis,

$$
f\left[C l_{G}^{\beta}\left[f^{-1}(H)\right]\right] \subseteq C l^{X^{\prime}}\left[f\left(f^{-1}(H)\right)\right] \subseteq C l^{X^{\prime}}(H)=H .
$$

This implies, $C l_{G}^{\beta}\left[f^{-1}(H)\right] \subseteq f^{-1}(H)$. Hence $C l_{G}^{\beta}\left[f^{-1}(H)\right]=$ $f^{-1}(H)$, that is, $f^{-1}(H)$ is a G^{β}-closed set in (X, G). Hence by Lemma 2.4], f is a G^{β}-continuous.

THEOREM 2.6. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is G^{β} continuous if and only if $C l_{G}^{\beta}\left(f^{-1}(B)\right) \subseteq f^{-1}\left(C l^{X^{\prime}}(B)\right)$ for all $B \subseteq X^{\prime}$.

Proof. Let f be a G^{β}-continuous and B be any subset of $\left(X^{\prime}, G^{\prime}\right)$. Then $C l^{X^{\prime}}(B)$ is a closed set in $\left(X^{\prime}, G^{\prime}\right)$. Since f is a G^{β}-continuous then by Lemma 2.4, $f^{-1}\left[\mathrm{Cl}^{X^{\prime}}(B)\right]$ is a G^{β} closed set in (X, G). That is,

$$
C l_{G}^{\beta}\left[f^{-1}\left[C l^{X^{\prime}}(B)\right]\right]=f^{-1}\left[C l^{X^{\prime}}(B)\right] .
$$

Since $B \subseteq C l^{X^{\prime}}(B)$ then $f^{-1}(B) \subseteq f^{-1}\left[\mathrm{Cl}^{X^{\prime}}(B)\right]$. This implies,

$$
C l_{G}^{\beta}\left(f^{-1}(B)\right) \subseteq C l_{G}^{\beta}\left[f^{-1}\left[C l^{X^{\prime}}(B)\right]\right]=f^{-1}\left[C l^{X^{\prime}}(B)\right] .
$$

Hence $C l_{G}^{\beta}\left(f^{-1}(B)\right) \subseteq f^{-1}\left[C l^{X^{\prime}}(B)\right]$.
Conversely, let H be any closed set in (X^{\prime}, G^{\prime}), that is, $\mathrm{Cl}^{X^{\prime}}(H)=$ H. Since $H \subseteq X^{\prime}$. Then by the hypothesis,

$$
C l_{G}^{\beta}\left(f^{-1}(H)\right) \subseteq f^{-1}\left(C l^{X^{\prime}}(H)\right)=f^{-1}(H)
$$

This implies, $C l_{G}^{\beta}\left[f^{-1}(H)\right] \subseteq f^{-1}(H)$. Hence $C l_{G}^{\beta}\left[f^{-1}(H)\right]=$ $f^{-1}(H)$, that is, $f^{-1}(H)$ is a G^{β}-closed set in (X, G). Hence by Lemma (2.4), f is a G^{β}-continuous.

THEOREM 2.7. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is G^{β} continuous if and only if $f^{-1}\left(\operatorname{Int}^{X^{\prime}}(B)\right) \subseteq \operatorname{Int}_{G}^{\beta}\left[f^{-1}(B)\right]$ for all $B \subseteq X^{\prime}$.

Proof. Let f be a G^{β}-continuous and B be any subset of $\left(X^{\prime}, G^{\prime}\right)$. Then Int $^{X^{\prime}}(B)$ is an open set in $\left(X^{\prime}, G^{\prime}\right)$. Since f is a G^{β}-continuous then $f^{-1}\left[\operatorname{Int}^{X^{\prime}}(B)\right]$ is a G^{β}-open set in (X, G). That is,

$$
\operatorname{Int} t_{G}^{\beta}\left[f^{-1}\left[\operatorname{Int} X^{X^{\prime}}(B)\right]\right]=f^{-1}\left[\operatorname{Int}^{X^{\prime}}(B)\right] .
$$

Since $\operatorname{Int}^{X^{\prime}}(B) \subseteq B$ then $f^{-1}\left[\operatorname{Int}^{X^{\prime}}(B)\right] \subseteq f^{-1}(B)$. This implies,

$$
f^{-1}\left[\operatorname{Int} t^{X^{\prime}}(B)\right]=\operatorname{Int} t_{G}^{\beta}\left[f^{-1}\left[\operatorname{Int} t^{X^{\prime}}(B)\right]\right] \subseteq \operatorname{Int}_{G}^{\beta}\left(f^{-1}(B)\right) .
$$

Hence $f^{-1}\left(\operatorname{Int}^{X^{\prime}}(B)\right) \subseteq \operatorname{Int}_{G}^{\beta}\left[f^{-1}(B)\right]$.
Conversely, let U be any open set in $\left(X^{\prime}, G^{\prime}\right)$, that is, $\operatorname{Int}{ }^{X^{\prime}}(U)=$ U. Since $U \subseteq X^{\prime}$. Then by the hypothesis,

$$
f^{-1}(U)=f^{-1}\left(I n t^{X^{\prime}}(U)\right) \subseteq I n t_{G}^{\beta}\left[f^{-1}(U)\right] .
$$

This implies, $f^{-1}(U) \subseteq \operatorname{Int}_{G}^{\beta}\left[f^{-1}(U)\right]$. Hence $f^{-1}(U)=$ Int ${ }_{G}^{\beta}\left[f^{-1}(U)\right]$, that is, $f^{-1}(U)$ is a G^{β}-open set in (X, G). Hence f is a G^{β}-continuous.

3. CONTRA G^{β}-CONTINUOUS FUNCTIONS

Definition 3.1. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a Gmetric space (X, G) into a G -metric space $\left(X^{\prime}, G^{\prime}\right)$ is called contra G^{β}-continuous function if $f^{-1}(V)$ is a G^{β}-closed set in (X, G) for every open set V in $\left(X^{\prime}, G^{\prime}\right)$.

THEOREM 3.2. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ is contra G^{β}-continuous if and only if $f^{-1}(F)$ is a G^{β}-open set in (X, G) for every closed set F in $\left(X^{\prime}, G^{\prime}\right)$.
Theorem 3.3. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ is contra G^{β}-continuous if and only if for each $x \in X$ and each closed set F in $\left(X^{\prime}, G^{\prime}\right)$ containing $f(x)$, there is a G^{β}-open set U in (X, G) containing x such that $f(U) \subseteq F$.

Proof. Suppose that $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ is contra G^{β} continuous. Let $x \in X$ and F be a closed set in $\left(X^{\prime}, G^{\prime}\right)$ containing $f(x)$. Then by the last theorem, $U=f^{-1}(F)$ is a G^{β}-open set in (X, G). Since $f(x) \in F$ then $x \in f^{-1}(F)=U$ and $f(U)=$ $f\left(f^{-1}(F)\right) \subseteq F$.
Conversely, Let F be a closed set in $\left(X^{\prime}, G^{\prime}\right)$. For each $x \in$ $f^{-1}(F), f(x) \in F$. Then by the hypothesis, there is a G^{β}-open set U_{x} in (X, G) containing x such that $f\left(U_{x}\right) \subseteq F$. Therefore, we obtain

$$
f^{-1}(F)=\cup\left\{U_{x}: x \in f^{-1}(F)\right\} .
$$

Then $f^{-1}(F)$ is a G^{β}-open set in (X, G). Hence by the last theorem, f is a contra G^{β}-continuous.

Definition 3.4. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a Gmetric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is called almost G^{β}-continuous if for each $x \in X$ and each open set V in (X^{\prime}, G^{\prime}) containing $f(x)$, there is a G^{β}-open set U in (X, G) containing x such that $f(U) \subseteq I n t_{G^{\prime}}^{\beta}\left[C l^{X^{\prime}}(V)\right]$.
A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space (X^{\prime}, G^{\prime}) is called G^{β}-open function if $f(V)$ is a G^{β}-open set in (X^{\prime}, G^{\prime}) for every G^{β}-open set V in (X, G).

Theorem 3.5. If a function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ is a G^{β}-open function and contra G^{β}-continuous then f is an almost G^{β}-continuous.

Proof. Let $x \in X$ be any point in (X, G) and V be any open set in $\left(X^{\prime}, G^{\prime}\right)$ containing $f(x)$. Since f ia contra G^{β}-continuous and $C l^{X^{\prime}}(V)$ be a closed set in $\left(X^{\prime}, G^{\prime}\right)$ containing $f(x)$ then by Theorem (3.3), there is a G^{β}-open set U in (X, G) containing x such that $f(U) \subseteq C l^{X^{\prime}}(V)$. Since f is a G^{β}-open function and U is a G^{β}-open set in (X, G) then $f(U)$ is a G^{β}-open set in $\left(X^{\prime}, G^{\prime}\right)$ and
$f(U)=\operatorname{Int}_{G^{\prime}}^{\beta}[f(U)] \subseteq \operatorname{Int}_{G^{\prime}}^{\beta}\left[C l^{X^{\prime}}(f(U))\right] \subseteq \operatorname{Int}_{G^{\prime}}^{\beta}\left[\mathrm{Cl}^{X^{\prime}}(V)\right]$. This shows that f is an almost G^{β}-continuous.
Definition 3.6. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is called weakly G^{β}-continuous function if for each $x \in X$ and each open set V in $\left(X^{\prime}, G^{\prime}\right)$ containing $f(x)$, there is a G^{β}-open set U in (X, G) containing x such that $f(U) \subseteq C l^{X^{\prime}}(V)$.
It is clear that every a G^{β}-continuous function is a weakly G^{β}-continuous function.

A subset of G-metric space is called a clopen set if it is both open and closed set, similar for G^{β}-clopen set.

Definition 3.7. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$ is called slightly G^{β}-continuous function if for each $x \in X$ and each clopen set U in $\left(X^{\prime}, G^{\prime}\right)$ containing $f(x)$, there exists G^{β}-open set V in (X, G) containing x such that $f(V) \subseteq U$.

Theorem 3.8. Let $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ be a function of a G-metric space (X, G) into a G-metric space $\left(X^{\prime}, G^{\prime}\right)$. Then the following are equivalent:
(1) f is slightly G^{β}-continuous.
(2) $f^{-1}(U)$ is a G^{β}-open set in (X, G) for every clopen set U in $\left(X^{\prime}, G^{\prime}\right)$.
(3) $f^{-1}(U)$ is a G^{β}-closed set in (X, G) for every clopen set U in $\left(X^{\prime}, G^{\prime}\right)$.
(4) $f^{-1}(U)$ is a G^{β}-cloopen set in (X, G) for every clopen set U in $\left(X^{\prime}, G^{\prime}\right)$.
Proof. $1 \Rightarrow 2$: Let U be a clopen set in $\left(X^{\prime}, G^{\prime}\right)$. For each $x \in$ $f^{-1}(U), f(x) \in U$. Since f is slightly G^{β}-continuous then there exists G^{β}-open set V_{x} in (X, G) containing x such that $f\left(V_{x}\right) \subseteq$ U. This implies, $x \in V_{x} \subseteq f^{-1}(U)$. Hence

$$
f^{-1}(U)=\cup\left\{V_{x}: x \in f^{-1}(U)\right\} .
$$

That is, $f^{-1}(U)$ is a G^{β}-open set in (X, G).
$2 \Rightarrow 3$: Let U be a clopen set in $\left(X^{\prime}, G^{\prime}\right)$. Then $X^{\prime}-U$ is a clopen set in $\left(X^{\prime}, G^{\prime}\right)$. By the hypothesis, $X-f^{-1}(U)=f^{-1}\left(X^{\prime}-U\right)$ is a G^{β}-open set in (X, G). That is, $f^{-1}(U)$ is a G^{β}-closed set in (X, G).
$3 \Rightarrow 4$: It is easy from the previous.
$4 \Rightarrow$ 1: Let $x \in X$ be any point in (X, G) and U be a clopen set in $\left(X^{\prime}, G^{\prime}\right)$ containing $f(x)$. By the hypothesis, $f^{-1}(U)$ is a G^{β} cloopen set in (X, G). Then $V=f^{-1}(U)$ is a G^{β}-open set V in (X, G) containing x such that $f(V) \subseteq U$. That is, f is slightly G^{β}-continuous.

THEOREM 3.9. Every weakly G^{β}-continuous is slightly G^{β} continuous.

Proof. Let $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ be a weakly G^{β} continuous function. Let $x \in X$ be any point in (X, G) and U be any clopen set in $\left(X^{\prime}, G^{\prime}\right)$ containing $f(x)$. Then U is an open set in (X^{\prime}, G^{\prime}) containing $f(x)$. Then there is a G^{β}-open set V in (X, G) containing x such that $f(V) \subseteq C l(U)=U$. Hence f is slightly G^{β}-continuous.

4. REFERENCES

[1] Z.Mustafa and B.Sims, Some remarks concerning D-metric spaces Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia (Spain), (2003), 189-198.
[2] Z.Mustafa and B.Sims, A new approach to generalized metric spaces, Journal of Non-linear and Convex Analysis, 7, (2006), 289-297.
[3] A. Mubarak and A. Saif, On G^{β}-property in G-metric spaces, Asian Journal of Advanced Research and Reports (in press).

